14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874 | class Simulation:
"""
This class incorporates methods to simulate previously estimated
mixed logit and multinomial logit models.
"""
def simulate_hh_cars(
self,
regiontype,
hh_size,
adults_working,
children,
htype,
quali_opnv,
sharing,
relative_cost_per_car,
age_adults,
**kwargs
):
"""
This method calculates the probability of a single household
to own 0,1,2,3 or more cars.
Parameters
----------
regiontype: int
RegioStaR7-classification of regions (1-7), where 1-4 are urban
classifications and 5-7 rural classifications.
hh_size: int
Household size
adults_working: int
Number of working adults
children: int
Number of children in household
htype: int
1, if individual house, 0, if multi-apartment house
quali_opnv: int
Quality of public transport on a scale from 1-4
(1: Very Bad, 2: Bad, 3: Good, 4: Very Good)
sharing: float
Carsharing membership (1: Yes, 0: no)
relative_cost_per_car:
Average Price of considered cars / net household income
age_adults: float
Mean age of adults in the household scaled by 0.1!
Returns
-------
res_temp : array
Probabilities, that a household owns 0,1,2, or 3 cars.
"""
# get keyword-arguments
asc_offset_hh_cars = kwargs.get("asc_offset", self.asc_offset_hh_cars)
asc_offset = np.array(
[
asc_offset_hh_cars["rt_" + str(regiontype)]["offset_" + str(c)]
for c in range(4)
]
)
# define model properties below.
count_c = 4 # number of alternatives: 0-3
all_alternatives = np.array((0, 1, 2, 3))
no_constant_fixed = 0
no_constant_random = 0
no_variable_fixed = 10
no_variable_random = 1
# specify maximum number of alternatives
dim_aggr_alt_max = max(
no_constant_fixed,
no_constant_random,
no_variable_fixed,
no_variable_random,
)
# Derive urban / rural regiontype according to RegioStaR2-scale from regiontype
if regiontype in [1, 2, 3, 4]:
urban_region = 1
rural_region = 0
elif regiontype in [5, 6, 7]:
urban_region = 0
rural_region = 1
else:
raise ValueError("Regiontype must be a value between 1-7.")
# Define hh_data.
# IMPORTANT: The order of parameters (see hh_data) must be equal to the order during
# estimation (see param), as defined in param = {...} !!!
hh_data = np.zeros((4, dim_aggr_alt_max, count_c), dtype="float64")
# fill parameters: variable_fixed
for i in range(count_c):
hh_data[2][0][i] = urban_region
hh_data[2][1][i] = rural_region
hh_data[2][2][i] = hh_size
hh_data[2][3][i] = children
if i == 0:
hh_data[2][4][i] = 0
else:
hh_data[2][4][i] = 1
hh_data[2][5][i] = htype
hh_data[2][6][i] = sharing
hh_data[2][7][i] = quali_opnv
hh_data[2][8][i] = age_adults
hh_data[2][9][i] = adults_working
# fill parameters: variable_random
for i in range(count_c):
hh_data[3][0][i] = relative_cost_per_car * i
@njit
def get_utility_fast_MNL_cars(c, data, initial_point, asc_offset):
if c != 0:
res_temp = asc_offset[c] + initial_point[c - 1]
else:
res_temp = asc_offset[c]
for a in range(no_constant_fixed):
res_temp = res_temp + initial_point[(count_c - 1) + a] * data[0][a][c]
for a in range(no_constant_random):
res_temp = (
res_temp
+ initial_point[(count_c - 1) + no_constant_fixed + a]
* data[1][a][c]
)
for a in range(no_variable_fixed):
res_temp = (
res_temp
+ initial_point[
(count_c - 1)
+ no_constant_fixed
+ +(no_variable_fixed + no_variable_random) * c
+ a
]
* data[2][a][c]
)
for a in range(no_variable_random):
res_temp = (
res_temp
+ initial_point[
(count_c - 1)
+ no_constant_fixed
+ no_constant_random
+ (no_variable_fixed + no_variable_random) * c
+ no_variable_fixed
+ a
]
* data[3][a][c]
)
return res_temp
@njit
def calculate_logit_fast_MNL_cars(alternative, data, initial_point, asc_offset):
"""
This method calculates the multinomial logit probability for a given
set of coefficients and all choices in the sample of the dataset.
Returns
-------
Probability of MNL model at the initial point.
"""
# calculate top
top = np.exp(
get_utility_fast_MNL_cars(alternative, data, initial_point, asc_offset)
)
# calculate bottom
bottom = 0
for c in range(count_c):
bottom += np.exp(
get_utility_fast_MNL_cars(c, data, initial_point, asc_offset)
)
return top / bottom
# multinomial logit
probs = []
for i in all_alternatives:
prob_temp = calculate_logit_fast_MNL_cars(
i, hh_data, self.initial_point, asc_offset
)
probs.append(prob_temp)
return probs
def func(self, x, scale):
"""
This method is a supportive function for the method get_speed().
Parameters
----------
x : float
Input value to be scaled.
scale : float
scaling factor.
Returns
-------
TYPE
DESCRIPTION.
"""
return np.log(x + 1) * scale
# derivation of mode specific speed: UNIT = [km/h]
def get_speed(self, mode, distance, regiontype):
"""
This method calculates the average speed for a given transport mode,
travel distance and travel regiontype.
Parameters
----------
mode : int
Transport mode.
distance : int
Travel distance.
regiontype : int
RegioStaR7-classification of regions (1-7), where 1-4 are urban
classifications and 5-7 rural classifications.
Returns
-------
speed : float
Average speed.
"""
if mode == 1:
return 5
elif mode in (3, 4, 5):
scale = self.log_param.loc[
(self.log_param["regiontype"] == regiontype)
& (self.log_param["mode"] == mode),
"scale",
].values[0]
else:
scale = self.log_param.loc[
(self.log_param["regiontype"] == 0) & (self.log_param["mode"] == mode),
"scale",
].values[0]
speed = self.func(distance, scale)
return speed
def get_travel_duration_single(self, mode, distance, regiontype):
"""
This method calculates the duration of travel.
Parameters
----------
mode : int
Transport mode.
distance : int
Travel distance.
regiontype : int
RegioStaR7-classification of regions (1-7), where 1-4 are urban
classifications and 5-7 rural classifications.
Returns
-------
float
Travel duration.
"""
# self.check_distance = distance
if distance == 0:
return 0
else:
return distance / (self.get_speed(mode, distance, regiontype) / 60)
def get_travel_cost(self, distance, mode, regiontype):
"""
This method calculated the travel costs.
Parameters
----------
mode : int
Transport mode.
distance : int
Travel distance.
regiontype : int
RegioStaR7-classification of regions (1-7), where 1-4 are urban
classifications and 5-7 rural classifications.
Returns
-------
cost_temp : float
Travel costs in €.
"""
if mode == 10:
cost_temp = (
self.get_travel_duration_single(mode, distance, regiontype)
* self.cc_cost
)
else:
cost_temp = self.dict_specific_travel_cost[mode] * distance
return cost_temp
def simulate_mode_choice(
self, agegroup, occupation, regiontype, distance, av, **kwargs
):
"""
This method calculates the probability, that a transport mode is chosen.
Parameters
----------
agegroup : int
Agegroup of the agent (1: <18, 2: 18-65, 3: >65)
occupation : int
Occupation type of the agent (1: full-time work, 2: part-time, 3: education, 4: no occupation)
regiontype : int
RegioStaR7-classification of regions (1-7), where 1-4 are urban
classifications and 5-7 rural classifications.
distance : int
Distance traveled in km.
av : array
The availability of each mode in numpy array format, indicated
by 1 (available) or 0 (not available).
Returns
-------
probs : array
Probabilities, that a transport mode is chosen.
"""
# define model properties below.
count_c = 10 # number of alternatives: 0-9
all_alternatives = np.arange(10)
no_constant_fixed = 0
no_constant_random = 0
no_variable_fixed = 10
no_variable_random = 1
# specify maximum number of alternatives
dim_aggr_alt_max = 10 # no_variable_fixed
# Define trip_data.
# IMPORTANT: The order of parameters must be equal to the order during
# estimation, as defined in param = {...} !!!
trip_data = np.zeros((4, dim_aggr_alt_max, count_c))
# fill parameters: variable_fixed
if agegroup == 1:
ag_1 = 1
ag_2 = 0
ag_3 = 0
elif agegroup == 2:
ag_1 = 0
ag_2 = 1
ag_3 = 0
else:
ag_1 = 0
ag_2 = 0
ag_3 = 1
if occupation == 1:
occ_1 = 1
occ_2 = 0
occ_3 = 0
occ_4 = 0
elif occupation == 2:
occ_1 = 0
occ_2 = 1
occ_3 = 0
occ_4 = 0
elif occupation == 3:
occ_1 = 0
occ_2 = 0
occ_3 = 1
occ_4 = 0
else:
occ_1 = 0
occ_2 = 0
occ_3 = 0
occ_4 = 1
if regiontype in (1, 2, 3, 4):
urban = 1
rural = 0
else:
urban = 0
rural = 1
for i in range(count_c):
trip_data[2][0][i] = ag_1
trip_data[2][1][i] = ag_2
trip_data[2][2][i] = ag_3
trip_data[2][3][i] = occ_1
trip_data[2][4][i] = occ_2
trip_data[2][5][i] = occ_3
trip_data[2][6][i] = occ_4
trip_data[2][7][i] = urban
trip_data[2][8][i] = rural
mode = i + 1
trip_data[2][9][i] = self.get_travel_cost(distance, mode, regiontype)
# fill parameters: variable_random
for i in range(count_c):
mode = i + 1
trip_data[3][0][i] = self.get_travel_duration_single(
mode, distance, regiontype
)
@njit
def get_utility_fast_MNL_mode(c, data, initial_point):
"""
This method calculates the utility of a choice option.
Parameters
----------
c : int
choice option.
data : array
Array, containing the base data.
initial_point : array
Array, containing the estimated model parameters.
Returns
-------
res_temp : float
Utility of choice option.
"""
if c == 0:
res_temp = initial_point[c - 1]
else:
res_temp = 0
for a in range(no_constant_fixed):
res_temp = res_temp + initial_point[(count_c - 1) + a] * data[0][a][c]
for a in range(no_constant_random):
res_temp = (
res_temp
+ initial_point[(count_c - 1) + no_constant_fixed + a]
* data[1][a][c]
)
for a in range(no_variable_fixed):
res_temp = (
res_temp
+ initial_point[
(count_c - 1)
+ no_constant_fixed
+ no_constant_random
+ (no_variable_fixed + no_variable_random) * c
+ a
]
* data[2][a][c]
)
for a in range(no_variable_random):
res_temp = (
res_temp
+ initial_point[
(count_c - 1)
+ no_constant_fixed
+ no_constant_random
+ (no_variable_fixed + no_variable_random) * c
+ no_variable_fixed
+ a
]
* data[3][a][c]
)
return res_temp
@njit
def calculate_logit_fast_MNL_mode(alternative, data, initial_point, av):
"""
This method calculates the multinomial logit probability for a given
set of coefficients and all choices in the sample of the dataset.
Parameters
----------
A "point" with all coefficients of MLN-attributes.
Returns
-------
Probability of MNL model at a specified point.
"""
# calculate top
top = av[alternative] * np.exp(
get_utility_fast_MNL_mode(alternative, data, initial_point)
)
# calculate bottom
bottom = 0
for c in range(count_c):
bottom += av[c] * np.exp(
get_utility_fast_MNL_mode(c, data, initial_point)
)
return top / bottom
probs = []
for i in all_alternatives:
prob_temp = calculate_logit_fast_MNL_mode(
i, trip_data, self.initial_point, av
)
probs.append(prob_temp)
return probs
def simulate_hh_car_type_germany(
self,
AV,
SEGMENT,
RELATIVE_B_KOSTEN_MAL100,
REICHWEITE_DURCH100,
LADE_TANK_ZEIT,
DISTANZ_LADE_TANK,
CO2_MAL10,
MEAN_HH_AGE,
HH_SIZE,
POPULATION,
CAR_PARK_EV,
CARSHARING,
LONG_RANGE_AV,
EV_EXPERIENCE,
OWN_POWER,
HH_OCC,
PT_QUALITY,
RELATIVER_KAUFPREIS,
**kwargs
):
"""
Please contact the package maintainers via GitHub to receive the
required choice estimates of the MNL-model and further simulation instructions.
"""
ASC_OFFSET = kwargs.get("ASC_OFFSET", [0, 0, 0, 0])
count_c = 4 # number of alternatives: 0-3
all_alternatives = np.array((0, 1, 2, 3))
no_constant_fixed = 0
no_constant_random = 0
no_variable_fixed = 21
no_variable_random = 1
# specify maximum number of alternatives
dim_aggr_alt_max = max(
no_constant_fixed,
no_constant_random,
no_variable_fixed,
no_variable_random,
)
# Define hh_data.
# IMPORTANT: The order of parameters (see hh_data) must be equal to the order during
# estimation (see param), as defined in param = {...} !!!
hh_data = np.zeros((4, dim_aggr_alt_max, count_c), dtype="float64")
map_segment = {
"Kleinwagen": 0,
"Kompaktklasse": 1,
"Mittelklasse": 2,
"Oberklasse": 3,
"SUV": 4,
"Van": 5,
}
# fill parameters: variable_fixed
for i in range(count_c):
# SEGMENT
segment_temp = map_segment[SEGMENT[i]]
hh_data[2][segment_temp][i] = 1
all_seg = [0, 1, 2, 3, 4, 5]
all_seg.remove(segment_temp)
for seg in all_seg:
hh_data[2][seg][i] = 0
# OTHER ATTRIBUTES
hh_data[2][6][i] = RELATIVER_KAUFPREIS[i]
hh_data[2][7][i] = RELATIVE_B_KOSTEN_MAL100[i]
hh_data[2][8][i] = LADE_TANK_ZEIT[i]
hh_data[2][9][i] = DISTANZ_LADE_TANK[i]
hh_data[2][10][i] = CO2_MAL10[i]
hh_data[2][11][i] = MEAN_HH_AGE[i]
hh_data[2][12][i] = HH_SIZE[i]
hh_data[2][13][i] = POPULATION[i]
hh_data[2][14][i] = CAR_PARK_EV[i]
hh_data[2][15][i] = CARSHARING[i]
hh_data[2][16][i] = LONG_RANGE_AV[i]
hh_data[2][17][i] = EV_EXPERIENCE[i]
hh_data[2][18][i] = OWN_POWER[i]
hh_data[2][19][i] = HH_OCC[i]
hh_data[2][20][i] = PT_QUALITY[i]
hh_data[3][0][i] = REICHWEITE_DURCH100[i]
# @njit
def get_utility_fast_MNL_cars(c, data, initial_point, asc_offset):
if c != 0:
res_temp = initial_point[c - 1] + asc_offset[c]
else:
res_temp = asc_offset[c]
for a in range(no_constant_fixed):
res_temp = res_temp + initial_point[(count_c - 1) + a] * data[0][a][c]
for a in range(no_constant_random):
res_temp = (
res_temp
+ initial_point[(count_c - 1) + no_constant_fixed + a]
* data[1][a][c]
)
for a in range(no_variable_fixed):
res_temp = (
res_temp
+ initial_point[
(count_c - 1)
+ no_constant_fixed
+ no_constant_random
+ (no_variable_fixed + no_variable_random) * c
+ a
]
* data[2][a][c]
)
for a in range(no_variable_random):
res_temp = (
res_temp
+ initial_point[
(count_c - 1)
+ no_constant_fixed
+ no_constant_random
+ (no_variable_fixed + no_variable_random) * c
+ no_variable_fixed
+ a
]
* data[3][a][c]
)
return res_temp
# @njit
def calculate_logit_fast_MNL_cars(
alternative, av, data, initial_point, asc_offset
):
"""
This method calculates the multinomial logit probability for a given
set of coefficients and all choices in the sample of the dataset.
Returns
-------
Probability of MNL model at the initial point.
"""
# calculate top
top = av[alternative] * np.exp(
get_utility_fast_MNL_cars(alternative, data, initial_point, asc_offset)
)
# calculate bottom
bottom = 0
for c in range(count_c):
bottom += av[c] * np.exp(
get_utility_fast_MNL_cars(c, data, initial_point, asc_offset)
)
return top / bottom
# multinomial logit
probs = []
for i in all_alternatives:
prob_temp = calculate_logit_fast_MNL_cars(
i, AV, hh_data, self.initial_point, np.array(ASC_OFFSET)
)
probs.append(prob_temp)
return probs
def simulate_hh_car_type_japan(
self,
AV,
SEGMENT,
OPERATING_COSTS_SCALED,
RANGE_SCALED,
CHARGING_TIME,
CHARGING_DISTANCE,
CO2,
HH_SIZE,
MEAN_HH_AGE,
CAR_PARK_EV,
CARSHARING,
LONG_RANGE_AV,
EV_EXPERIENCE,
OWN_POWER,
PT_QUALITY,
RELATIVE_COSTS,
**kwargs
):
"""
Please contact the package maintainers via GitHub to receive the
required choice estimates of the MNL-model and further simulation instructions.
"""
ASC_OFFSET = kwargs.get("ASC_OFFSET", [0, 0, 0, 0])
count_c = 4 # number of alternatives: 0-3
all_alternatives = np.array((0, 1, 2, 3))
no_constant_fixed = 0
no_constant_random = 0
no_variable_fixed = 18
no_variable_random = 1
# specify maximum number of alternatives
dim_aggr_alt_max = max(
no_constant_fixed,
no_constant_random,
no_variable_fixed,
no_variable_random,
)
# Define hh_data.
# IMPORTANT: The order of parameters (see hh_data) must be equal to the order during
# estimation (see param), as defined in param = {...} !!!
hh_data = np.zeros((4, dim_aggr_alt_max, count_c), dtype="float64")
map_segment = {
"Kei": 0,
"Small": 1,
"Sedan": 2,
"Mini-Van": 3,
"Full-Size-Van": 4,
}
# fill parameters: variable_fixed
for i in range(count_c):
# SEGMENT
segment_temp = map_segment[SEGMENT[i]]
hh_data[2][segment_temp][i] = 1
all_seg = [0, 1, 2, 3, 4]
all_seg.remove(segment_temp)
for seg in all_seg:
hh_data[2][seg][i] = 0
# OTHER ATTRIBUTES
hh_data[2][6][i] = OPERATING_COSTS_SCALED[i]
hh_data[2][7][i] = RANGE_SCALED[i]
hh_data[2][8][i] = CHARGING_DISTANCE[i]
hh_data[2][9][i] = CO2[i]
hh_data[2][10][i] = HH_SIZE[i]
hh_data[2][11][i] = MEAN_HH_AGE[i]
hh_data[2][12][i] = CAR_PARK_EV[i]
hh_data[2][13][i] = CARSHARING[i]
hh_data[2][14][i] = LONG_RANGE_AV[i]
hh_data[2][15][i] = EV_EXPERIENCE[i]
hh_data[2][16][i] = OWN_POWER[i]
hh_data[2][17][i] = PT_QUALITY[i]
hh_data[3][0][i] = RELATIVE_COSTS[i]
# @njit
def get_utility_fast_MNL_cars(c, data, initial_point, asc_offset):
"""
This method calculates the utility of choice alternative c.
Parameters
----------
c : int
Choice alternative.
data : numpy-array
Choice attributes.
initial_point : numpy array
parameters
asc_offset : numpy array
Offset values for ASC constants.
Returns
-------
res_temp : float
Utility of choice option c.
res_parts : list
Utility parts of choice option c.
"""
res_parts = []
if c != 0:
res_part_temp = initial_point[c - 1] + asc_offset[c]
res_parts.append(res_part_temp)
res_temp = res_part_temp
else:
res_part_temp = asc_offset[c]
res_parts.append(res_part_temp)
res_temp = res_part_temp
for a in range(no_constant_fixed):
res_part_temp = initial_point[(count_c - 1) + a] * data[0][a][c]
res_parts.append(res_part_temp)
res_temp = res_temp + res_part_temp
for a in range(no_constant_random):
res_part_temp = (
initial_point[(count_c - 1) + no_constant_fixed + a] * data[1][a][c]
)
res_parts.append(res_part_temp)
res_temp = res_temp + res_part_temp
for a in range(no_variable_fixed):
res_part_temp = (
initial_point[
(count_c - 1)
+ no_constant_fixed
+ no_constant_random
+ (no_variable_fixed + no_variable_random) * c
+ a
]
* data[2][a][c]
)
res_parts.append(res_part_temp)
res_temp = res_temp + res_part_temp
for a in range(no_variable_random):
res_part_temp = (
initial_point[
(count_c - 1)
+ no_constant_fixed
+ no_constant_random
+ (no_variable_fixed + no_variable_random) * c
+ no_variable_fixed
+ a
]
* data[3][a][c]
)
res_parts.append(res_part_temp)
res_temp = res_temp + res_part_temp
return res_temp, res_parts
# @njit
def calculate_logit_fast_MNL_cars(
alternative, av, data, initial_point, asc_offset
):
"""
This method calculates the multinomial logit probability for a given
set of coefficients and all choices in the sample of the dataset.
Returns
-------
Probability of MNL model at the initial point.
"""
# calculate top
utility_temp = get_utility_fast_MNL_cars(
alternative, data, initial_point, asc_offset
)
top = av[alternative] * np.exp(utility_temp[0])
utility_parts = utility_temp[1]
# calculate bottom
bottom = 0
for c in range(count_c):
utility_temp = get_utility_fast_MNL_cars(
c, data, initial_point, asc_offset
)
bottom += av[c] * np.exp(utility_temp[0])
logit_prob = top / bottom
return logit_prob, utility_parts
# multinomial logit
probs = []
utility_parts = {}
for i in all_alternatives:
logit_res = calculate_logit_fast_MNL_cars(
i, AV, hh_data, self.initial_point, np.array(ASC_OFFSET)
)
prob_temp = logit_res[0]
probs.append(prob_temp)
utility_parts[i] = logit_res[1]
return probs, utility_parts
|